

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

83

Isabela State University Linker:
Journal of Engineering, Computing, and Technology

Volume 1, Issue 2
 ISSN (Print): 3082-3676 ISSN (Online): 3082-3684
DOI: https://doi.org/10.65141/ject.v1i2.n7

CERS Algorithm: An Enhanced Security System Using Hybrid Cryptosystem

Justine Jhorryeth P. Burgos1, Paula Bianca S. Dimapilis2, Edwin R. Arboleda3,
Jericho M. Bojorcelo4, John Benedict A. de Vila5
Department of Computer, Electronics, and Electrical Engineering, College of Engineering
and Information Technology, Cavite State University, Indang, Cavite, 4122,
Philippines1,2,3,4,5

 edwin.r.arboleda@cvsu.edu.ph

RESEARCH ARTICLE
INFORMATION

ABSTRACT

Received: May 26, 2023
Reviewed: November 20, 2024
Accepted: December 27, 2024
Published: December 31, 2024

 Copyright © 2025 by
the Author(s). This open-access
article is distributed under the
Creative Commons Attribution
4.0 International License.

Communication and information exchange
through the internet have a significant risk of
information leakage owing to security issues. In
this paper, a new hybrid cryptosystem design is
proposed in order to accomplish high-security
communication. The Schnorr authentication
algorithm is used in this research to ensure a high
degree of data security and authentication by
integrating RSA, El Gamal, and Chaos-based
cryptosystems. The process begins with El Gamal's
key generation scheme. El Gamal is well-known for
its ability to compute complex discrete logarithms,
and when paired with RSA, its abilities are
dependent on the difficult process of factorization

of large prime integers. Multiple key schemes were
generated using the chaotic system. Finally, the
Schnorr was utilized to verify the original sender of
the message.

Keywords:

Chaos-based system, El Gamal cryptosystem, RSA
algorithm, and Schnorr digital signature, hybrid
cryptosystem

Introduction

Multimedia technology is quickly evolving these days, and it is mostly used for
communication. Internet communication carries a high risk of unprotected data
transfer due to security attacks and insecure services (Padmavathi & Kumari, 2013).
Cryptography is a method of protecting data from unauthorized hackers (Vekariya,
2015). It is a method of converting plain text into cipher text through a process known
as encryption, and its opposite is known as decryption. Cryptography consists of two

mailto:edwin.r.arboleda@cvsu.edu.ph

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

84

parts: the key and the algorithm (Vekariya, 2015). The term key refers to the numerical
and alphanumeric values used by an algorithm to manipulate data, making it safe and
accessible only to people who have the necessary key for access (Mo et al., 2017).

The key choice in cryptography is critical since it directly affects the reliability of
the encryption technique (Padmavathi & Kumari, 2013). Asymmetric algorithms and
symmetric algorithms are the two types of encryption algorithms (Chinnasamy et al.,
2021; Singh & Supriya, 2013). A symmetric algorithm is a type of cryptosystem in which
just one key is used for both encryption and decryption. It is often referred to as
conventional encryption (Al Shabi, 2019; Bansal & Singh, 2016). An asymmetric
algorithm is a type of cryptosystem that handles encryption and decryption using a

private key and a public key pair (Maxwell et al., 2019). The public key serves as an
authentication and encryption key, whereas the private key serves as a decryption key
(Alegro et al., 2019). The encryption algorithm's dependability is determined by the
security of the key, the length of the key, the initialization vector, and how they all work
together.

El Gamal Algorithm

Taher Elgamal initially described the Elgamal Cryptosystem in 1984. It is a public

key cryptography method. This algorithm's encryption and decryption are based on the

discrete logarithm problem (Rivera et al., 2019). Understanding the message simplifies

decryption, which is a critical element of this procedure. The encryption strategy is

employed when the RSA algorithm is separated into three distinct processes such as

key creation, encryption, and decryption (Magsino et al., 2019; Ukwuoma et al., 2015).

The three steps are characterized as follows:

Key Generation:

• Choose a large prime p

• Choose random g and x number such that gcd (x, q) = 1.

• Compute y = gx mod p
The encryption (p, g, y) is the public key and x is kept as the private key.

Encryption Algorithm:

• Prepare a message m ∈ Zp

• Choose any number k that is relatively prime to p − 1

• Calculate p = gk and s = hk = gxk.

• Multiply it with M (p, M*s) = (gk, M*s).
Decryption Algorithm:

• Calculate s′ = px = gxk.

• Divide all M*s by s′ to obtain M as s = s′

Chaos-Based Cryptosystem
Chaotic encryption was introduced by Silakari, Shukla, and Khare and was

established in the year 1990. It is a fast and secure cryptosystem wherein chaotic map
properties are used. It is an algorithm that utilizes a symmetric key algorithm that uses
at least one key to encrypt and decrypt data. This algorithm is used in systems where
the speed of encryption and decryption is required (Arboleda, 2019). The three
processes: key generation, encryption, and decryption, are defined as follows:
Key Generation:

• Choose the parameter value (M, A, X)

• Xn+1 = { A* Xn (Xn-1) }MOD 256 using these equation generate keys

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

85

 where: n = 1 to j (number of keys)
 A = any integer (1, 2, 3…n)
 Xn = chaotic function initial value (2, 3, ... n)

• Apply the gray code to the calculated values.

• Convert generated keys to binary form.
Encryption Algorithm:

• Convert the plaintext into its ASCII equivalent form.

• After converting to ASCII characters, then convert it to its 8-bit binary form and
convert it into decimal numbers.

• To encrypt the plaintext, use the digital logic XOR and denote it as ciphertext C.

• Get the 1's complement of ciphertext C.
Decryption Algorithm:

• Get the 1's complement of ciphertext C.

• To decrypt the ciphertext C, get the XOR value using the digital logic XOR.

• Convert the generated XOR values into decimal numbers.

• Convert it to 8-bit binary form.

• Find the equivalent ASCII characters.

RSA Algorithm
 RSA algorithm is an asymmetric cryptography algorithm that was first described
by Ron Rivest, Adi Shamir, and Leonard Adleman of the Massachusetts Institute of
Technology. It was first publicly established in the year 1990 and became the most
widely used and the most popular cryptographic algorithm. It enables public-key
encryption and is widely used to secure sensitive data, particularly when it is being sent
over an insecure network such as the internet. The idea of RSA was based on the
published works of Diffie and Hellman a few years ago, who introduced the concept of
such an algorithm but never really implemented it (Enriquez et al., 2019). The three
processes are key generation, encryption, and decryption (Espalmado & Arboleda,
2017), and are defined as follows:
Key Generation:

• Choose two random large prime numbers p and q for defining N = p x q.

• Compute the value of n using the formula n = p*q and ᶲ (n) using the formula ᶲ

(n) = (p-1)*(q-1).

• Choose another number e for this equation gcd (ᶲ(N), e) = 1.

• Choose again another number to find the natural number satisfying this equation
(d x e) (mod ᶲ(N)) = 1.

Encryption Algorithm:

• RSA encryption is done with the help of public key (n, e) to generate the
ciphertext.

• Convert the plaintext into its ASCII equivalent.

• Use c = mod n formula to calculate the ciphertext.
Decryption Algorithm:

• In decrypting, use this formula c = mod n to calculate the ciphertext.
Convert cipher text to ASCII equivalent.

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

86

Figure 1. Flowchart of Rivest-Shamir-Adleman Algorithm (RSA)

Schnorr Signature Algorithm

Schnorr is a digital signature algorithm that was created by Claus-Peter Schnorr
in 1989. The security is based on discrete logarithm problems that are difficult to solve.
This algorithm is known as the simplest digital signature scheme considered to be
secure in a random oracle model. It is efficient and generates short signatures (Kocarev,
2013). The three processes, key generation, encryption, and decryption are defined as
follows:
Key Generation:

• First choose two primes, p, and q, such that q (1 < q <p – 1) is a prime factor of
p − 1.

• To generate a public key, choose a is not equal to 1 such that a ≡ h^(p−1)/q (mod
p), that is, a^q ≡ h^(p−1) (mod p).

• To generate a key pair, choose a random number s < q which is used as the

private key.

• To generate a key pair, choose a random number s < q which is used as the
private key.

• Select a value of r, such that r < q, and compute x ≡ ar (mod p).

• Select a value of t and send it to the receiver.

• Calculate y ≡ r +st (mod q) and send it to the receiver.
The receiver verifies and computes x’ ≡ ay · λt (mod p).

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

87

Figure 2. Schnorr’s Authentication Scheme

Methods
The proposed algorithm is the combination of El Gamal cryptosystem, chaos-

based cryptography, Rivest-Shamir-Adleman Algorithm (RSA), and secured with the
Schnorr digital signature algorithm using MD4 as its hashing function.

Scheme of the Key Generation
El-Gamal Key Generation:

• Choose two large random different values of p and q satisfying this equation 255
< q < p.

• Choose (i) for the number of keys.

• Choose random multiplicative gi wherein gi< q.

• Compute yi= giq (mod p).
Chaos-Based Key Generation:

• Convert yi ‘s to binary.

• Get the equivalent gray code (ki) of yi.
RSA Key Generation:

• Compute ϕ(n) = (p-1) (q-1).

• Compute n =(p) (q).

• Choose the value of the public key (e); (e) and ϕ (n) should be coprime and e < p.

• Using the Extended Euclidean Algorithm computes the value of the private key
(d).

Schnorr Algorithm Key Generation:

• Choose two prime numbers (x) and (y); (y) must be a prime factor of x -1.

• Set the value of (a) and (s) satisfying these two equations ak ≡ 1(mod j) and s <
k.

• Compute λ ≡ (mod j).

• Choose a random number (r) wherein r < j.

• Compute x ≡ (mod j).

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

88

Scheme of Encryption
Chaos-Based Encryption:

• Convert plaintext into its ASCII binary equivalent.

• XOR the binary equivalent of the plaintext (mi) and the keys generated (ki).

• Get the 1’s complement (wi).

• Convert generated values into decimals.
RSA Encryption:

• Compute ci = (mod n) using the public keys (e, n).

Schnorr Algorithm:

• Get the summation of the encrypted values.

• Compute h ≡ H (tci.||x) (mod y). Use MD4 as a hashing function algorithm.

• Convert values into decimals.

• Compute u ≡ r + sh (mod y).

• Send values (h, u) to receiver B to verify the identification.

Scheme of Decryption
Schnorr Algorithm:

• Compute v ≡ · (mod j).

• Compute h’ ≡ H (tci.||x) (mod k). Use MD4 as a hashing function algorithm.

• Convert values into decimals.

• If it satisfies this equation h = h’ accepts the signature.
RSA Decryption:
Compute si = (mod n) using the public keys (e, n).

Figure 3. Block Diagram of the Proposed Algorithm

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

89

Results and Discussion
The proposed algorithm is the combination of El Gamal cryptosystem, chaos-

based cryptography, Rivest-Shamir-Adleman Algorithm (RSA), and secured with the
Schnorr digital signature algorithm using MD4 as its hashing function.

Key Generation
El Gamal Key Generation:

1. Choose two large random different values of p and q satisfying this equation 255
< q < p.
 q = 260 and p = 270

2. Choose (i) for the number of keys.
 i = 5

3. Choose random multiplicative gi such that gi< q.
 g1 = 100, g2 = 110, g3 = 120, g4 = 130, g5 =140

4. Compute yi= giq (mod p).
 y1= g1

q(mod p) = 100260(mod270) = 10
 y2= g2

q(mod p) = 110260(mod270) = 40
 y3= g3

q(mod p) = 120260(mod270) = 0
Chaos Key Generation:

1. Convert yi ‘s to binary

2. Get yi gray code equivalent (ki).

RSA Key Generation:

1. Compute ϕ(n) = (p-1)(q-1).
 Φ (n) = (p-1) (q-1)
 = (270-1) (260-1)
 = (269) (259)
 = 69 671

2. Compute n =(p) (q).
 n = pq
 = (270) (260)

 = 70 200
3. Choose the value of the public key (e); (e) and ϕ (n) should be coprime and e < p.

 e = 26
4. Using the Extended Euclidean Algorithm, computes the value of private key d.

d = 8039

y1 = 10 00001010
y2 = 40 00101000
y3 = 0 00000000
y4 = 135 10000111
y5 = 70 01000110

ki Binary Gray Code

k1 = 00001010 = 00001111

k2 = 00101000 = 00111100
k3 = 00000000 = 00000000
k4 = 10000111 = 11000100

k5 = 01000110 = 01100101

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

90

Schnorr Key Generation:
1. Choose two prime numbers (x) and (y); (y) must be a prime factor of x -1.

 x = 29 and y = 7
2. Set the value of (a) and (s) satisfying these two equations ak ≡ 1(modj) and s < k.

 a = 7 and s = 4
3. Compute λ ≡ (mod j).

 λ ≡ a^(-s) (mod x)
 ≡ 7^(-4)(mod 29)
 ≡ 24

4. Choose a random number (r) wherein r < j.
 r = 5

5. Compute x ≡ (mod j).
 j ≡ a^r(mod x)
 ≡ 7^5(mod 29)

 ≡ 16
Data Encryption

MESSAGE: The quick brown fox jumps over the lazy dog.
1. Convert plaintext into its ASCII binary equivalent as shown in the table. The

message must have no space.

Table 1. ASCII Binary Equivalent

Message ASCII Binary

T 84 01010100

h 104 01101000

e 101 01100101

q 113 01110001

u 117 01110101

i 105 01101001

c 99 01100011

k 107 01101011

b 98 01100010

r 114 01110010

o 111 01101111

w 119 01110111

n 110 01101110

f 102 01100110

o 111 01101111

x 120 01111000

j 106 01101010

u 117 01110101

m 109 01101101

p 112 01110000

s 115 01110011

o 111 01101111

v 118 01110110

e 101 01100101

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

91

r 114 01110010

t 116 01110100

h 104 01101000

e 101 01100101

l 108 01101100

a 97 01100001

z 122 01111010

y 121 01111001

d 100 01100100

o 111 01101111

g 103 01100111

2. XOR the binary equivalent of the plaintext (mi) and the keys generated (ki) as

shown in Table 2.

Table 2. XOR-ed Values (mi)

 Message Key used mi XOR ki

m1 01010100 00001111 01011011
m2 01101000 00111100 01010100
m3 01100101 00000000 01100101
m4 01110001 11000100 10110101
m5 01110101 01100101 00010000
m6 01101001 00001111 01100110
m7 01100011 00111100 01011111
m8 01101011 00000000 01101011
m9 01100010 11000100 10100110
m10 01110010 01100101 00010111
m11 01101111 00001111 01100000
m12 01110111 00111100 01001011
m13 01101110 00000000 01101110
m14 01100110 11000100 10100010
m15 01101111 01100101 00001010
m16 01111000 00001111 01110111
m17 01101010 00111100 01010110
m18 01110101 00000000 01110101
m19 01101101 11000100 10101001
m20 01110000 01100101 00010101
m21 01110011 00001111 01111100
m22 01101111 00111100 01010011
m23 01110110 00000000 01110110
m24 01100101 11000100 10100001
m25 01110010 01100101 00010111
m26 01110100 00001111 01111011
m27 01101000 00111100 01010100
m28 01100101 00000000 01100101
m29 01101100 11000100 10101000
m30 01100001 01100101 00000100

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

92

m31 01111010 00001111 01110101
m32 01111001 00111100 01000101
m33 01100100 00000000 01100100
m34 01101111 11000100 10101011
m35 01100111 01100101 00000010

3. Get the 1’s complement (fi) and then convert it to decimal equivalent as shown

in the table.

Table 3. Decimal Equivalent (fi)

 mi XOR ki fi’s

(binary)

fi’s

(decimal)

f1 01011011 10100100 164

f2 01010100 10101011 171

f3 01100101 10011010 154

f4 10110101 01001010 74

f5 00010000 11101111 239

f6 01100110 10011001 153

f7 01011111 10100000 160

f8 01101011 10010100 148

f9 10100110 01011001 89

f10 00010111 11101000 232

f11 01100000 10011111 159

f12 01001011 10110100 180

f13 01101110 10010001 145

f14 10100010 01011101 93

f15 00001010 11110101 245

f16 01110111 10001000 136

f17 01010110 10101001 169

f18 01110101 10001010 138

f19 10101001 01010110 86

f20 00010101 11101010 234

f21 01111100 10000011 131

f22 01010011 10101100 172

f23 01110110 10001001 137

f24 10100001 01011110 94

f25 00010111 11101000 232

f26 01111011 10000100 132

f27 01010100 10101011 171

f28 01100101 10011010 154

f29 10101000 01010111 87

f30 00000100 11111011 251

f31 01110101 10001010 138

f32 01000101 10111010 186

f33 01100100 10011011 155

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

93

f34 10101011 01010100 84

f35 00000010 11111101 253

4. Get the 1’s complement (fi) and then convert it to decimal equivalent as shown

in the table.

Table 4. RSA Encryption

ci = (mod n)

Encrypted Message

c1 = (mod 70 200) = 17,536

c2 = (mod 70 200) = 57,321

c3 = (mod 70 200)) = 4

c4 = (mod 70 200) = 17,176

c5 = (mod 70 200) = 24,361

c6 = (mod 70 200) = 65,529

c7 = (mod 70 200) = 2,200

c8 = (mod 70 200) = 31,264

c9 = (mod 70 200) = 21,961

c10 = (mod 70 200) = 30,424

c11 = (mod 70 200) = 34,641

c12 = (mod 70 200) = 32,400

c13 = (mod 70 200) = 21,025

c14 = (mod 70 200) = 32,049

c15 = (mod 70 200) = 36,625

c16 = (mod 70 200) = 32,536

c17 = (mod 70 200) = 47,281

c18= (mod 70 200) = 21,384

c19 = (mod 70 200) = 9,736

c20 = (mod 70 200) = 5,616

c21 = (mod 70 200) = 12,481

c22 = (mod 70 200) = 1,504

c23= (mod 70 200) = 9,409

c24 = (mod 70 200) = 39,256

c25 = (mod 70 200) = 30,424

c26 = (mod 70 200) = 40,824

c27 = (mod 70 200) = 57,321

c28 = (mod 70 200) = 16,696

c29 = (mod 70 200) = 45,009

c30 = (mod 70 200) = 63,001

c31 = (mod 70 200) = 21,384

c32 = (mod 70 200) = 36,936

c33 = (mod 70 200) = 625

c34 = (mod 70 200) = 16,416

c35 = (mod 70 200) = 35,929

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

94

5. Get the summation of the encrypted values.
=965284

Schnorr Algorithm
 1. Sign the summation of the encrypted message using Schnorr’s signature
 algorithm.

a. Compute h ≡ H (tci.||x) (mod y). Use MD4 as a hashing function algorithm
and convert it to decimals.

 h ≡ H (tci.||j) (mod y)
 ≡ H (965,284||16) (mod 7)

 = 025efe5eaf8f02cd28dcd844
 c98fac44d3a7c6315 (mod 7)
 =1353641033083616982700411951
 0719734808113038897 (mod 7)

 = 6
b. Compute u ≡ r + sh (mod y).

 u ≡ r + sh (mod y)
 ≡ (5 + 4 × 6) (mod 7)
 ≡ 29 (mod 7)
 = 1

 2. Send values (h,u) = (6,1) to receiver B to verify the identification.

Encrypted Message:
17536, 57321, 4, 17176, 24361, 65529, 2200, 31264, 21961, 30424, 34641, 32400,
21025, 32049, 36625, 32536, 47281, 21384, 9736, 5616, 12481, 1504, 9409, 39256,
30424, 40824, 57321, 16696, 45009, 63001, 21384, 36936, 625, 16416, 35929.

Data Decryption
1. Authenticate the signature given and accept it as valid if h = h’.

a. Calculate for the value of v ≡ · (mod x).
 v ≡ a^y x λ^h (mod x)

 ≡ 7^1 x 〖24〗^6 (mod 29).

 ≡ 1,337,720,832 (mod 29)
 ≡ 16
b. Compute h ≡ H (tci.||x) (mod y). Use MD4 as a hashing function algorithm

and convert it to decimals.
 h ≡ H (tci.||j) (mod y)
 ≡ H (965,284||16) (mod 7)
 = 025efe5eaf8f02cd28dcd844

 c98fac44d3a7c6315 (mod 7)
 =1353641033083616982700411951

 0719734808113038897 (mod 7)
 = 6

Since the value obtained is identical to the value of h, therefore, user B accepts

the signature as valid.

2. Decrypt the ciphertext values Compute ci = (mod n) using the public keys (e, n)
and encrypt generated values as shown in Table 5. Note that the value of n =70 200
and e = 26.

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

95

Table 5. RSA Decryption

ci = (mod n) wi’s

(decimal)

c1 = (mod 54 225) = 164

c2 = (mod 54 225) = 171

c3 = (mod 54 225) = 154

c4 = (mod 54 225) = 74

c5 = (mod 54 225) = 239

c6 = (mod 54 225) = 153

c7 = (mod 54 225) = 160

c8 = (mod 54 225) = 148

c9 = (mod 54 225) = 89

c10 = (mod 54 225) = 232

c11 = (mod 54 225) = 159

c12 = (mod 54 225) = 180

c13 = (mod 54 225) = 145

c14 = (mod 54 225) = 93

c15 = (mod 54 225) = 245

c16 = (mod 54 225) = 136

c17 = (mod 54 225) = 169

c18= (mod 54 225) = 138

c19 = (mod 54 225) = 86

c20 = (mod 54 225) = 234

c21 = (mod 54 225) = 131

c22 = (mod 54 225) = 172

c23= (mod 54 225) = 137

c24 = (mod 54 225) = 94

c25 = (mod 54 225) = 232

c26 = (mod 54 225) = 132

c27 = (mod 54 225) = 171

c28 = (mod 54 225) = 154

c29 = (mod 54 225) = 87

c30 = (mod 54 225) = 251

c31 = (mod 54 225) = 138

c32 = (mod 54 225) = 186

c33 = (mod 54 225) = 155

c34 = (mod 54 225) = 84

c35 = (mod 54 225) = 253

3. Convert the decimal value of fi’s to its binary form. After that, convert it to its 1’s

complement equivalent as shown in Table 6.

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

96

Table 6. XOR-ed Decimal Equivalent (fi)

4. Using the XOR operation, XOR the binary forms of the one’s complement wi’S with

the corresponding secret key ki and denote mi as shown in Table 7.

 fi’s

(decimal)

fi’s

(binary)

mi XOR ki

f1 164 10100100 01011011

f2 171 10101011 01010100

f3 154 10011010 01100101

f4 74 01001010 10110101

f5 239 11101111 00010000

f6 153 10011001 01100110

f7 160 10100000 01011111

f8 148 10010100 01101011

f9 89 01011001 10100110

f10 232 11101000 00010111

f11 159 10011111 01100000

f12 180 10110100 01001011

f13 145 10010001 01101110

f14 93 01011101 10100010

f15 245 11110101 00001010

f16 136 10001000 01110111

f17 169 10101001 01010110

f18 138 10001010 01110101

f19 86 01010110 10101001

f20 234 11101010 00010101

f21 131 10000011 01111100

f22 172 10101100 01010011

f23 137 10001001 01110110

f24 94 01011110 10100001

f25 232 11101000 00010111

f26 132 10000100 01111011

f27 171 10101011 01010100

f28 154 10011010 01100101

f29 87 01010111 10101000

f30 251 11111011 00000100

f31 138 10001010 01110101

f32 186 10111010 01000101

f33 155 10011011 01100100

f34 84 01010100 10101011

f35 253 11111101 00000010

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

97

Table 7. XOR-ed Equivalent (fi)

 Message Key used mi XOR ki

m1 01010100 00001111 01011011
m2 01101000 00111100 01010100
m3 01100101 00000000 01100101
m4 01110001 11000100 10110101
m5 01110101 01100101 00010000
m6 01101001 00001111 01100110
m7 01100011 00111100 01011111
m8 01101011 00000000 01101011
m9 01100010 11000100 10100110
m10 01110010 01100101 00010111
m11 01101111 00001111 01100000
m12 01110111 00111100 01001011
m13 01101110 00000000 01101110
m14 01100110 11000100 10100010
m15 01101111 01100101 00001010
m16 01111000 00001111 01110111
m17 01101010 00111100 01010110
m18 01110101 00000000 01110101
m19 01101101 11000100 10101001
m20 01110000 01100101 00010101
m21 01110011 00001111 01111100
m22 01101111 00111100 01010011
m23 01110110 00000000 01110110
m24 01100101 11000100 10100001
m25 01110010 01100101 00010111
m26 01110100 00001111 01111011
m27 01101000 00111100 01010100
m28 01100101 00000000 01100101
m29 01101100 11000100 10101000

m30 01100001 01100101 00000100
m31 01111010 00001111 01110101
m32 01111001 00111100 01000101
m33 01100100 00000000 01100100
m34 01101111 11000100 10101011
m35 01100111 01100101 00000010

5. Convert the mi’s value to its ASCII equivalent without space as shown in Table 8.

Table 8. ASCII Message Equivalent (fi)

Binary ASCII Message

01010100 84 T

01101000 104 H

01100101 101 E

01110001 113 Q

01110101 117 U

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

98

01101001 105 I

01100011 99 C

01101011 107 K

01100010 98 B

01110010 114 R

01101111 111 O

01110111 119 W

01101110 110 N

01100110 102 F

01101111 111 O

01111000 120 X

01101010 106 J

01110101 117 U

01101101 109 M

F01110000 112 P

01110011 115 S

01101111 111 O

01110110 118 V

01100101 101 E

01110010 114 R

01110100 116 T

01101000 104 H

01100101 101 E

01101100 108 L

01100001 97 a

01111010 122 z

01111001 121 y

01100100 100 d

01101111 111 o

01100111 103 g

Decrypted Message: The quick brown fox jumps over the lazy dog

Conclusion and Future Works
Stand-alone algorithms are already difficult to decipher and decrypt. The

proposed algorithm is composed of those stand-alone algorithms and it is the
combination of El Gamal cryptosystem, chaos-based cryptography, Rivest-Shamir-
Adleman Algorithm (RSA), and secured with the Schnorr digital signature algorithm
using MD4 as its hashing function. Based on the results and data that were gathered,
it is proven that the combination of the proposed algorithm makes an effective high level
of security from unauthorized hackers.

References

[1] Al-Shabi, M. A. (2019). A survey on symmetric and asymmetric cryptography
algorithms in information security. International Journal of Scientific and

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

99

Research Publications (IJSRP), 9(3), 8779.
https://doi.org/10.29322/ijsrp.9.03.2019.p8779

[2] Alegro, J. K. P., Arboleda, E. R., Pereña, M. R., & Dellosa, R. M. (2019). Hybrid
Schnorr, RSA, and AES cryptosystem. International Journal of Scientific and
Technology Research, 8, 1770–1776.

[3] Arboleda, E. R. (2019). Secure and fast chaotic El Gamal cryptosystem.
International Journal of Engineering and Advance Technology (IJEAT), 8(5), 1693–
1699.

[4] Bansal, V. P., & Singh, S. (2016). A hybrid data encryption technique using RSA
and Blowfish for cloud computing on FPGAs. In 2015 2nd International
Conference on Recent Advances in Engineering and Computational Sciences
(RAECS 2015) (pp. 1–5). https://doi.org/10.1109/RAECS.2015.7453367

[5] Chinnasamy, P., Padmavathi, S., Swathy, R., & Rakesh, S. (2021). Efficient data
security using hybrid cryptography on cloud computing. Lecture Notes in
Networks and Systems, 145, 537–547. https://doi.org/10.1007/978-981-15-
7345-3_46

[6] Enriquez, M., Garcia, D. W., & Arboleda, E. (2019). Enhanced hybrid algorithm
of secure and fast chaos-based AES, RSA, and ElGamal cryptosystems. Indian
Journal of Science and Technology, 10(27).

[7] Espalmado, J. M. B., & Arboleda, E. R. (2017). DARE algorithm: A new security
protocol by integration of different cryptographic techniques. International
Journal of Electrical and Computer Engineering, 7(2), 1032–1041.

[8] Kocarev, L. (2013). Cryptography. IEEE Transactions on Circuits and Systems,
60(1), 5–21. https://doi.org/10.1109/7384.963463

[9] Kumari, P., Kumar, U., & Singh, S. K. (2019). Schnorr digital signature to improve
security using quantum cryptography. Springer Singapore.
https://doi.org/10.1007/978-981-13-3185-5

[10] Magsino, J. P., Arboleda, E. R., & Corpuz, R. R. (2019). Enhancing security of El
Gamal encryption scheme using RSA and chaos algorithm for e-commerce
application. International Journal of Scientific and Technology Research, 8(11),
November.

[11] Maxwell, G., Poelstra, A., Seurin, Y., & Wuille, P. (2019). Simple Schnorr multi-
signatures with applications to Bitcoin. Designs, Codes, and Cryptography, 87(9),
2139–2164. https://doi.org/10.1007/s10623-019-00608-x

[12] Mo, F., Hsu, Y. C., Chang, H. H., Pan, S. C., Yan, J. J., & Liao, T. L. (2017). Design
of an improved RSA cryptosystem based on synchronization of discrete chaotic
systems. In Proceedings of the 2016 International Conference on Information
System and Artificial Intelligence (ISAI 2016) (pp. 9–13).
https://doi.org/10.1109/ISAI.2016.0012

[13] Padmavathi, B., & Kumari, S. R. (2013). A survey on performance analysis of
DES, AES, and RSA algorithm along with LSB substitution technique.
International Journal of Science and Research, 2(4), 2319–7064.
http://www.ijsr.net

https://doi.org/10.29322/ijsrp.9.03.2019.p8779
https://doi.org/10.1109/RAECS.2015.7453367
https://doi.org/10.1007/978-981-15-7345-3_46
https://doi.org/10.1007/978-981-15-7345-3_46
https://doi.org/10.1109/7384.963463
https://doi.org/10.1007/978-981-13-3185-5
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1109/ISAI.2016.0012
http://www.ijsr.net/

Volume 1, Issue 2 Isabela State University Linker:

Journal of Engineering, Computing, and Technology

100

[14] Rivera, L. B., Bay, J. A., Arboleda, E. R., Pereña, M. R., & Dellosa, R. M. (2019).
Hybrid cryptosystem using RSA, DSA, ElGamal, and AES. International Journal
of Scientific and Technology Research.

[15] Singh, G., & Supriya, S. (2013). A study of encryption algorithms (RSA, DES,
3DES, and AES) for information security. International Journal of Computer
Applications, 67(19), 33–38. https://doi.org/10.5120/11507-7224

[16] Ukwuoma, H., Studies, S., & Hammawa, M. (2015). Optimized key generation for
RSA encryption. Innovative Systems Design and Engineering, 6(11), 35–45.

[17] Vekariya, M. (2015). Comparative analysis of cryptographic algorithms and

advanced cryptographic algorithms. International Journal of Computer
Engineering and Sciences, 1(1), 1. https://doi.org/10.26472/ijces.v1i1.20

Conflict of Interest
The authors declare that there are no conflicts of interest regarding the

publication of this paper.

https://doi.org/10.5120/11507-7224
https://doi.org/10.26472/ijces.v1i1.20

