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Communication and information exchange 
through the internet have a significant risk of 
information leakage owing to security issues. In 
this paper, a new hybrid cryptosystem design is 
proposed in order to accomplish high-security 
communication. The Schnorr authentication 
algorithm is used in this research to ensure a high 
degree of data security and authentication by 
integrating RSA, El Gamal, and Chaos-based 
cryptosystems. The process begins with El Gamal's 
key generation scheme. El Gamal is well-known for 
its ability to compute complex discrete logarithms, 
and when paired with RSA, its abilities are 
dependent on the difficult process of factorization 

of large prime integers. Multiple key schemes were 
generated using the chaotic system. Finally, the 
Schnorr was utilized to verify the original sender of 
the message. 
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Introduction 

Multimedia technology is quickly evolving these days, and it is mostly used for 
communication. Internet communication carries a high risk of unprotected data 
transfer due to security attacks and insecure services (Padmavathi & Kumari, 2013). 
Cryptography is a method of protecting data from unauthorized hackers (Vekariya, 
2015). It is a method of converting plain text into cipher text through a process known 
as encryption, and its opposite is known as decryption. Cryptography consists of two 
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parts: the key and the algorithm (Vekariya, 2015). The term key refers to the numerical 
and alphanumeric values used by an algorithm to manipulate data, making it safe and 
accessible only to people who have the necessary key for access (Mo et al., 2017). 

The key choice in cryptography is critical since it directly affects the reliability of 
the encryption technique (Padmavathi & Kumari, 2013). Asymmetric algorithms and 
symmetric algorithms are the two types of encryption algorithms (Chinnasamy et al., 
2021; Singh & Supriya, 2013). A symmetric algorithm is a type of cryptosystem in which 
just one key is used for both encryption and decryption. It is often referred to as 
conventional encryption (Al Shabi, 2019; Bansal & Singh, 2016). An asymmetric 
algorithm is a type of cryptosystem that handles encryption and decryption using a 

private key and a public key pair (Maxwell et al., 2019). The public key serves as an 
authentication and encryption key, whereas the private key serves as a decryption key 
(Alegro et al., 2019). The encryption algorithm's dependability is determined by the 
security of the key, the length of the key, the initialization vector, and how they all work 
together. 
 
El Gamal Algorithm 

Taher Elgamal initially described the Elgamal Cryptosystem in 1984. It is a public 

key cryptography method. This algorithm's encryption and decryption are based on the 

discrete logarithm problem (Rivera et al., 2019). Understanding the message simplifies 

decryption, which is a critical element of this procedure. The encryption strategy is 

employed when the RSA algorithm is separated into three distinct processes such as 

key creation, encryption, and decryption (Magsino et al., 2019; Ukwuoma et al., 2015). 

The three steps are characterized as follows: 

Key Generation:  

• Choose a large prime p  

• Choose random g and x number such that gcd (x, q) = 1.  

• Compute y = gx mod p  
The encryption (p, g, y) is the public key and x is kept as the private key.  

Encryption Algorithm:  

• Prepare a message m ∈ Zp  

• Choose any number k that is relatively prime to p − 1  

• Calculate p = gk and s = hk = gxk.  

• Multiply it with M (p, M*s) = (gk, M*s).  
Decryption Algorithm:  

• Calculate s′ = px = gxk.  

• Divide all M*s by s′ to obtain M as s = s′  
 

Chaos-Based Cryptosystem  
Chaotic encryption was introduced by Silakari, Shukla, and Khare and was 

established in the year 1990. It is a fast and secure cryptosystem wherein chaotic map 
properties are used. It is an algorithm that utilizes a symmetric key algorithm that uses 
at least one key to encrypt and decrypt data. This algorithm is used in systems where 
the speed of encryption and decryption is required (Arboleda, 2019). The three 
processes: key generation, encryption, and decryption, are defined as follows: 
Key Generation: 

• Choose the parameter value (M, A, X) 

• Xn+1 = { A* Xn (Xn-1) }MOD 256 using these equation generate keys 
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          where: n = 1 to j (number of keys) 
          A = any integer (1, 2, 3…n) 
         Xn = chaotic function initial value (2, 3, ... n) 

• Apply the gray code to the calculated values. 

• Convert generated keys to binary form. 
Encryption Algorithm: 

• Convert the plaintext into its ASCII equivalent form. 

• After converting to ASCII characters, then convert it to its 8-bit binary form and 
convert it into decimal numbers. 

• To encrypt the plaintext, use the digital logic XOR and denote it as ciphertext C. 

• Get the 1's complement of ciphertext C.  
Decryption Algorithm: 

• Get the 1's complement of ciphertext C. 

• To decrypt the ciphertext C, get the XOR value using the digital logic XOR. 

• Convert the generated XOR values into decimal numbers.  

• Convert it to 8-bit binary form. 

• Find the equivalent ASCII characters. 

RSA Algorithm  
  RSA algorithm is an asymmetric cryptography algorithm that was first described 
by Ron Rivest, Adi Shamir, and Leonard Adleman of the Massachusetts Institute of 
Technology. It was first publicly established in the year 1990 and became the most 
widely used and the most popular cryptographic algorithm. It enables public-key 
encryption and is widely used to secure sensitive data, particularly when it is being sent 
over an insecure network such as the internet.  The idea of RSA was based on the 
published works of Diffie and Hellman a few years ago, who introduced the concept of 
such an algorithm but never really implemented it (Enriquez et al., 2019). The three 
processes are key generation, encryption, and decryption (Espalmado & Arboleda, 
2017), and are defined as follows: 
Key Generation: 

• Choose two random large prime numbers p and q for defining N = p x q. 

• Compute the value of n using the formula n = p*q and ᶲ (n) using the formula ᶲ 

(n) = (p-1)*(q-1). 

• Choose another number e for this equation gcd (ᶲ(N), e) = 1. 

• Choose again another number to find the natural number satisfying this equation 
(d x e) (mod ᶲ(N)) = 1. 

Encryption Algorithm: 

• RSA encryption is done with the help of public key (n, e) to generate the 
ciphertext. 

• Convert the plaintext into its ASCII equivalent.  

• Use c = mod n formula to calculate the ciphertext.  
Decryption Algorithm: 

• In decrypting, use this formula c = mod n to calculate the ciphertext. 
Convert cipher text to ASCII equivalent. 
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Figure 1. Flowchart of Rivest-Shamir-Adleman Algorithm (RSA) 
 
Schnorr Signature Algorithm 

Schnorr is a digital signature algorithm that was created by Claus-Peter Schnorr 
in 1989. The security is based on discrete logarithm problems that are difficult to solve. 
This algorithm is known as the simplest digital signature scheme considered to be 
secure in a random oracle model. It is efficient and generates short signatures (Kocarev, 
2013). The three processes, key generation, encryption, and decryption are defined as 
follows: 
Key Generation: 

• First choose two primes, p, and q, such that q (1 < q <p – 1) is a prime factor of 
p − 1. 

• To generate a public key, choose a is not equal to 1 such that a ≡ h^(p−1)/q (mod 
p), that is, a^q ≡ h^(p−1) (mod p). 

• To generate a key pair, choose a random number s < q which is used as the 

private key. 

• To generate a key pair, choose a random number s < q which is used as the 
private key. 

• Select a value of r, such that r < q, and compute x ≡ ar (mod p).  

• Select a value of t and send it to the receiver. 

• Calculate y ≡ r +st (mod q) and send it to the receiver.  
The receiver verifies and computes x’ ≡ ay · λt (mod p).  
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Figure 2. Schnorr’s Authentication Scheme 
 

Methods 
The proposed algorithm is the combination of El Gamal cryptosystem, chaos-

based cryptography, Rivest-Shamir-Adleman Algorithm (RSA), and secured with the 
Schnorr digital signature algorithm using MD4 as its hashing function. 
 
Scheme of the Key Generation 
El-Gamal Key Generation: 

• Choose two large random different values of p and q satisfying this equation 255 
< q < p.  

• Choose (i) for the number of keys.  

• Choose random multiplicative gi wherein gi< q. 

• Compute yi= giq (mod p). 
Chaos-Based Key Generation: 

• Convert yi ‘s to binary. 

• Get the equivalent gray code ( ki ) of  yi. 
RSA Key Generation: 

• Compute ϕ(n) = (p-1) (q-1). 

• Compute n =(p) (q). 

• Choose the value of the public key (e); (e) and ϕ (n) should be coprime and e < p. 

• Using the Extended Euclidean Algorithm computes the value of the private key 
(d). 

Schnorr Algorithm Key Generation: 

• Choose two prime numbers (x) and (y); (y) must be a prime factor of x -1. 

• Set the value of (a) and (s) satisfying these two equations ak  ≡ 1(mod j) and s < 
k. 

• Compute λ  ≡  (mod j). 

• Choose a random number (r) wherein r < j. 

• Compute x ≡ (mod j). 
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Scheme of Encryption 
Chaos-Based Encryption: 

• Convert plaintext into its ASCII binary equivalent. 

• XOR the binary equivalent of the plaintext (mi) and the keys generated (ki). 

• Get the 1’s complement (wi). 

• Convert generated values into decimals. 
RSA Encryption: 

• Compute ci = (mod n) using the public keys (e, n). 

Schnorr Algorithm: 

• Get the summation of the encrypted values. 

• Compute h ≡ H (tci.||x) (mod y). Use MD4 as a hashing function algorithm. 

• Convert values into decimals. 

• Compute u ≡ r + sh (mod y). 

• Send values (h, u) to receiver B to verify the identification. 
 

Scheme of Decryption 
Schnorr Algorithm: 

• Compute v ≡  ·  (mod j). 

• Compute h’ ≡ H (tci.||x) (mod k). Use MD4 as a hashing function algorithm. 

• Convert values into decimals. 

• If it satisfies this equation h = h’ accepts the signature. 
RSA Decryption: 
Compute si = (mod n) using the public keys (e, n). 

 

 
Figure 3. Block Diagram of the Proposed Algorithm 
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Results and Discussion 
The proposed algorithm is the combination of El Gamal cryptosystem, chaos-

based cryptography, Rivest-Shamir-Adleman Algorithm (RSA), and secured with the 
Schnorr digital signature algorithm using MD4 as its hashing function. 

Key Generation 
El Gamal Key Generation: 

1. Choose two large random different values of p and q satisfying this equation 255 
< q < p.  
  q = 260 and p = 270 

2. Choose (i) for the number of keys.  
  i = 5 

3. Choose random multiplicative gi such that gi< q. 
      g1 = 100, g2 = 110, g3 = 120, g4 = 130, g5 =140 

4. Compute yi= giq (mod p). 
  y1= g1

q(mod p) = 100260(mod270) = 10 
  y2= g2

q(mod p) = 110260(mod270) = 40 
  y3= g3

q(mod p) = 120260(mod270) =  0 
Chaos Key Generation: 

1. Convert yi ‘s to binary 
 

 
 

 
 
 

2. Get yi  gray code equivalent (ki). 
 
 

 

 

 
RSA Key Generation: 

1. Compute ϕ(n) = (p-1)(q-1). 
     Φ (n)      = (p-1) (q-1)  
    = (270-1) (260-1)  
    = (269) (259) 
    = 69 671 

2. Compute n =(p) (q). 
   n = pq 
        = (270) (260) 

          = 70 200 
3. Choose the value of the public key (e); (e) and ϕ (n) should be coprime and e < p. 

  e = 26 
4. Using the Extended Euclidean Algorithm, computes the value of private key d. 

d = 8039 
 

y1 = 10 00001010 
y2 = 40 00101000 
y3 = 0 00000000 
y4 = 135 10000111 
y5 = 70 01000110 

ki Binary Gray Code 

k1 = 00001010  = 00001111 

k2 = 00101000  = 00111100 
k3 = 00000000  = 00000000 
k4 = 10000111  = 11000100 

k5 = 01000110  = 01100101 
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Schnorr Key Generation: 
1. Choose two prime numbers (x) and (y); (y) must be a prime factor of x -1. 

  x = 29 and y = 7 
2. Set the value of (a) and (s) satisfying these two equations ak  ≡ 1(modj) and s < k. 

  a = 7 and s = 4 
3. Compute λ  ≡  (mod j). 

  λ         ≡ a^(-s ) (mod x) 
                     ≡  7^(-4)(mod 29) 
                                      ≡ 24 

4. Choose a random number (r) wherein r < j. 
  r = 5 

5. Compute x ≡ (mod j). 
  j    ≡ a^r(mod x) 
       ≡ 7^5(mod 29)  

             ≡ 16 
Data Encryption  

MESSAGE: The quick brown fox jumps over the lazy dog. 
1. Convert plaintext into its ASCII binary equivalent as shown in the table. The 

message must have no space. 
 
Table 1. ASCII Binary Equivalent 

 

Message ASCII Binary 

T 84 01010100 

h 104 01101000 

e 101 01100101 

q 113 01110001 

u 117 01110101 

i 105 01101001 

c 99 01100011 

k 107 01101011 

b 98 01100010 

r 114 01110010 

o 111 01101111 

w 119 01110111 

n 110 01101110 

f 102 01100110 

o 111 01101111 

x 120 01111000 

j 106 01101010 

u 117 01110101 

m 109 01101101 

p 112 01110000 

s 115 01110011 

o 111 01101111 

v 118 01110110 

e 101 01100101 
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r 114 01110010 

t 116 01110100 

h 104 01101000 

e 101 01100101 

l 108 01101100 

a 97 01100001 

z 122 01111010 

y 121 01111001 

d 100 01100100 

o 111 01101111 

g 103 01100111 

 
2. XOR the binary equivalent of the plaintext (mi) and the keys generated (ki ) as 

shown in Table 2. 
 
Table 2. XOR-ed Values (mi) 
 

 Message Key used mi XOR ki 

m1 01010100 00001111 01011011 
m2 01101000 00111100 01010100 
m3 01100101 00000000 01100101 
m4 01110001 11000100 10110101 
m5 01110101 01100101 00010000 
m6 01101001 00001111 01100110 
m7 01100011 00111100 01011111 
m8 01101011 00000000 01101011 
m9 01100010 11000100 10100110 
m10 01110010 01100101 00010111 
m11 01101111 00001111 01100000 
m12 01110111 00111100 01001011 
m13 01101110 00000000 01101110 
m14 01100110 11000100 10100010 
m15 01101111 01100101 00001010 
m16 01111000 00001111 01110111 
m17 01101010 00111100 01010110 
m18 01110101 00000000 01110101 
m19 01101101 11000100 10101001 
m20 01110000 01100101 00010101 
m21 01110011 00001111 01111100 
m22 01101111 00111100 01010011 
m23 01110110 00000000 01110110 
m24 01100101 11000100 10100001 
m25 01110010 01100101 00010111 
m26 01110100 00001111 01111011 
m27 01101000 00111100 01010100 
m28 01100101 00000000 01100101 
m29 01101100 11000100 10101000 
m30 01100001 01100101 00000100 
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m31 01111010 00001111 01110101 
m32 01111001 00111100 01000101 
m33 01100100 00000000 01100100 
m34 01101111 11000100 10101011 
m35 01100111 01100101 00000010 

 
3. Get the 1’s complement (fi) and then convert it to decimal equivalent as shown 

in the table. 
 
Table 3. Decimal Equivalent (fi) 
 

 mi XOR ki fi’s 

(binary) 

fi’s 

(decimal) 

f1 01011011 10100100 164 

f2 01010100 10101011 171 

f3 01100101 10011010 154 

f4 10110101 01001010 74 

f5 00010000 11101111 239 

f6 01100110 10011001 153 

f7 01011111 10100000 160 

f8 01101011 10010100 148 

f9 10100110 01011001 89 

f10 00010111 11101000 232 

f11 01100000 10011111 159 

f12 01001011 10110100 180 

f13 01101110 10010001 145 

f14 10100010 01011101 93 

f15 00001010 11110101 245 

f16 01110111 10001000 136 

f17 01010110 10101001 169 

f18 01110101 10001010 138 

f19 10101001 01010110 86 

f20 00010101 11101010 234 

f21 01111100 10000011 131 

f22 01010011 10101100 172 

f23 01110110 10001001 137 

f24 10100001 01011110 94 

f25 00010111 11101000 232 

f26 01111011 10000100 132 

f27 01010100 10101011 171 

f28 01100101 10011010 154 

f29 10101000 01010111 87 

f30 00000100 11111011 251 

f31 01110101 10001010 138 

f32 01000101 10111010 186 

f33 01100100 10011011 155 
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f34 10101011 01010100 84 

f35 00000010 11111101 253 

 
4. Get the 1’s complement (fi) and then convert it to decimal equivalent as shown 

in the table. 
 
Table 4. RSA Encryption 
 

ci = (mod n) 

 

Encrypted Message 

c1 =  (mod 70 200) = 17,536 

c2 = (mod 70 200)  = 57,321 

c3 = (mod 70 200)) = 4 

c4 = (mod 70 200)    = 17,176 

c5 = (mod 70 200)  = 24,361 

c6 = (mod 70 200)  = 65,529 

c7 = (mod 70 200)  = 2,200 

c8 = (mod 70 200)  = 31,264 

c9 = (mod 70 200)    = 21,961 

c10 = (mod 70 200)  = 30,424 

c11 = (mod 70 200)  = 34,641 

c12 = (mod 70 200)  = 32,400 

c13 = (mod 70 200)  = 21,025 

c14 = (mod 70 200)    = 32,049 

c15 = (mod 70 200)  = 36,625 

c16 = (mod 70 200)  = 32,536 

c17 = (mod 70 200)  = 47,281 

c18= (mod 70 200)  = 21,384 

c19 = (mod 70 200)    = 9,736 

c20 = (mod 70 200)  = 5,616 

c21 = (mod 70 200)  = 12,481 

c22 = (mod 70 200)  = 1,504 

c23= (mod 70 200)  = 9,409 

c24 = (mod 70 200)    = 39,256 

c25 = (mod 70 200)  = 30,424 

c26 = (mod 70 200)  = 40,824 

c27 = (mod 70 200)  = 57,321 

c28 = (mod 70 200)  = 16,696 

c29 = (mod 70 200)    = 45,009 

c30 = (mod 70 200)  = 63,001 

c31 = (mod 70 200)  = 21,384 

c32 = (mod 70 200)  = 36,936 

c33 = (mod 70 200)  = 625 

c34 = (mod 70 200)    = 16,416 

c35 = (mod 70 200)  = 35,929 
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5. Get the summation of the encrypted values. 
=965284 

 
Schnorr Algorithm  
     1. Sign the summation of the encrypted message using Schnorr’s signature
 algorithm. 

a. Compute h ≡ H (tci.||x) (mod y). Use MD4 as a hashing function algorithm 
and convert it to decimals. 

          h   ≡  H (tci.||j) (mod y) 
               ≡ H (965,284||16) (mod 7) 

               = 025efe5eaf8f02cd28dcd844 
                  c98fac44d3a7c6315 (mod 7) 
                             =1353641033083616982700411951 
                  0719734808113038897 (mod 7) 

               = 6 
b. Compute u ≡ r + sh (mod y). 

            u ≡ r + sh (mod y) 
               ≡ (5 + 4 × 6) (mod 7) 
               ≡ 29 (mod 7)  
               = 1 

     2.    Send values (h,u) = ( 6,1) to receiver B to verify the identification. 
 
Encrypted Message: 
17536, 57321, 4, 17176, 24361, 65529, 2200, 31264, 21961, 30424, 34641, 32400, 
21025, 32049, 36625, 32536, 47281, 21384, 9736, 5616, 12481, 1504, 9409, 39256, 
30424, 40824, 57321, 16696, 45009, 63001, 21384, 36936, 625, 16416, 35929. 
 
Data Decryption 
1. Authenticate the signature given and accept it as valid if h = h’. 

a. Calculate for the value of v ≡  ·  (mod x). 
 v   ≡ a^y x λ^h (mod x) 

      ≡ 7^1 x 〖24〗^6 (mod 29). 

      ≡ 1,337,720,832 (mod 29) 
      ≡ 16 
b. Compute h ≡ H (tci.||x) (mod y). Use MD4 as a hashing function algorithm 

and convert it to decimals. 
 h   ≡  H (tci.||j) (mod y) 
      ≡ H (965,284||16) (mod 7) 
      = 025efe5eaf8f02cd28dcd844 

         c98fac44d3a7c6315 (mod 7) 
                  =1353641033083616982700411951 

         0719734808113038897 (mod 7) 
          = 6 

Since the value obtained is identical to the value of h, therefore, user B accepts 

the signature as valid. 

2. Decrypt the ciphertext values Compute ci = (mod n) using the public keys (e, n) 
and encrypt generated values as shown in Table 5. Note that the value of n =70 200 
and e = 26. 

 



 
Volume 1, Issue 2   Isabela State University Linker: 

Journal of Engineering, Computing, and Technology 
 

95 
 

Table 5. RSA Decryption 
 

ci = (mod n) wi’s 

(decimal) 

c1 =  (mod 54 225)  = 164 

c2 = (mod 54 225)   = 171 

c3 = (mod 54 225)   = 154 

c4 = (mod 54 225)     = 74 

c5 = (mod 54 225)    = 239 

c6 = (mod 54 225)      = 153 

c7 = (mod 54 225)      = 160 

c8 = (mod 54 225)    = 148 

c9 = (mod 54 225)    = 89 

c10 = (mod 54 225)    = 232 

c11 =  (mod 54 225)    = 159 

c12 = (mod 54 225)     = 180 

c13 = (mod 54 225)     = 145 

c14 = (mod 54 225)     = 93 

c15 = (mod 54 225)         = 245 

c16 = (mod 54 225)      = 136 

c17 = (mod 54 225)      = 169 

c18= (mod 54 225)      = 138 

c19 = (mod 54 225)      = 86 

c20 = (mod 54 225)      = 234 

c21 = (mod 54 225)      = 131 

c22 = (mod 54 225)        = 172 

c23= (mod 54 225)      = 137 

c24 = (mod 54 225)        = 94 

c25 = (mod 54 225)      = 232 

c26 = (mod 54 225)      = 132 

c27 = (mod 54 225)      = 171 

c28 = (mod 54 225)      = 154 

c29 = (mod 54 225)      = 87 

c30 = (mod 54 225)      = 251 

c31 = (mod 54 225)      = 138 

c32 = (mod 54 225)      = 186 

c33 = (mod 54 225)      = 155 

c34 = (mod 54 225)         = 84 

c35 = (mod 54 225)       = 253 

 
3. Convert the decimal value of fi’s to its binary form. After that, convert it to its 1’s 

complement equivalent as shown in Table 6. 
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Table 6. XOR-ed Decimal Equivalent (fi) 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
4. Using the XOR operation, XOR the binary forms of the one’s complement wi’S with 

the corresponding secret key ki and denote mi as shown in Table 7. 
 
 
 
 

 fi’s 

(decimal) 

fi’s 

(binary) 

mi XOR ki 

f1 164 10100100 01011011 

f2 171 10101011 01010100 

f3 154 10011010 01100101 

f4 74 01001010 10110101 

f5 239 11101111 00010000 

f6 153 10011001 01100110 

f7 160 10100000 01011111 

f8 148 10010100 01101011 

f9 89 01011001 10100110 

f10 232 11101000 00010111 

f11 159 10011111 01100000 

f12 180 10110100 01001011 

f13 145 10010001 01101110 

f14 93 01011101 10100010 

f15 245 11110101 00001010 

f16 136 10001000 01110111 

f17 169 10101001 01010110 

f18 138 10001010 01110101 

f19 86 01010110 10101001 

f20 234 11101010 00010101 

f21 131 10000011 01111100 

f22 172 10101100 01010011 

f23 137 10001001 01110110 

f24 94 01011110 10100001 

f25 232 11101000 00010111 

f26 132 10000100 01111011 

f27 171 10101011 01010100 

f28 154 10011010 01100101 

f29 87 01010111 10101000 

f30 251 11111011 00000100 

f31 138 10001010 01110101 

f32 186 10111010 01000101 

f33 155 10011011 01100100 

f34 84 01010100 10101011 

f35 253 11111101 00000010 
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Table 7. XOR-ed  Equivalent (fi) 
 

 Message Key used mi XOR ki 

m1 01010100 00001111 01011011 
m2 01101000 00111100 01010100 
m3 01100101 00000000 01100101 
m4 01110001 11000100 10110101 
m5 01110101 01100101 00010000 
m6 01101001 00001111 01100110 
m7 01100011 00111100 01011111 
m8 01101011 00000000 01101011 
m9 01100010 11000100 10100110 
m10 01110010 01100101 00010111 
m11 01101111 00001111 01100000 
m12 01110111 00111100 01001011 
m13 01101110 00000000 01101110 
m14 01100110 11000100 10100010 
m15 01101111 01100101 00001010 
m16 01111000 00001111 01110111 
m17 01101010 00111100 01010110 
m18 01110101 00000000 01110101 
m19 01101101 11000100 10101001 
m20 01110000 01100101 00010101 
m21 01110011 00001111 01111100 
m22 01101111 00111100 01010011 
m23 01110110 00000000 01110110 
m24 01100101 11000100 10100001 
m25 01110010 01100101 00010111 
m26 01110100 00001111 01111011 
m27 01101000 00111100 01010100 
m28 01100101 00000000 01100101 
m29 01101100 11000100 10101000 

m30 01100001 01100101 00000100 
m31 01111010 00001111 01110101 
m32 01111001 00111100 01000101 
m33 01100100 00000000 01100100 
m34 01101111 11000100 10101011 
m35 01100111 01100101 00000010 

 
5. Convert the mi’s value to its ASCII equivalent without space as shown in Table 8. 
 
Table 8. ASCII Message Equivalent (fi) 
 

Binary ASCII Message 

01010100 84 T 

01101000 104 H 

01100101 101 E 

01110001 113 Q 

01110101 117 U 
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01101001 105 I 

01100011 99 C 

01101011 107 K 

01100010 98 B 

01110010 114 R 

01101111 111 O 

01110111 119 W 

01101110 110 N 

01100110 102 F 

01101111 111 O 

01111000 120 X 

01101010 106 J 

01110101 117 U 

01101101 109 M 

F01110000 112 P 

01110011 115 S 

01101111 111 O 

01110110 118 V 

01100101 101 E 

01110010 114 R 

01110100 116 T 

01101000 104 H 

01100101 101 E 

01101100 108 L 

01100001 97 a 

01111010 122 z 

01111001 121 y 

01100100 100 d 

01101111 111 o 

01100111 103 g 

 
Decrypted Message: The quick brown fox jumps over the lazy dog 
 

Conclusion and Future Works 
Stand-alone algorithms are already difficult to decipher and decrypt. The 

proposed algorithm is composed of those stand-alone algorithms and it is the 
combination of El Gamal cryptosystem, chaos-based cryptography, Rivest-Shamir-
Adleman Algorithm (RSA), and secured with the Schnorr digital signature algorithm 
using MD4 as its hashing function. Based on the results and data that were gathered, 
it is proven that the combination of the proposed algorithm makes an effective high level 
of security from unauthorized hackers. 
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